Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
2.
Genes (Basel) ; 14(12)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38136945

RESUMO

Mercury has high industrial utility and is present in many products, and environmental contamination and occupational exposure are widespread. There are numerous biological systems involved in the absorption, metabolism, and excretion of Hg, and it is possible that some systems may be impacted by genetic variation. If so, genotype may affect tissue concentrations of Hg and subsequent toxic effects. Genome-wide association testing was performed on blood Hg samples from pregnant women of the Avon Longitudinal Study of Parents and Children (n = 2893) and children of the Human Early Life Exposome (n = 1042). Directly-genotyped single-nucleotide polymorphisms (SNPs) were imputed to the Haplotype Reference Consortium r1.1 panel of whole genotypes and modelled againstlog-transformed Hg. Heritability was estimated using linkage disequilibrium score regression. The heritability of Hg was estimated as 24.0% (95% CI: 16.9% to 46.4%) in pregnant women, but could not be determined in children. There were 16 SNPs associated with Hg in pregnant women above a suggestive p-value threshold (p < 1 × 10-5), and 21 for children. However, no SNP passed this threshold in both studies, and none were genome-wide significant (p < 5 × 10-8). SNP-Hg associations were highly discordant between women and children, and this may reflect differences in metabolism, a gene-age interaction, or dose-response effects. Several suggestive variants had plausible links to Hg metabolism, such as rs146099921 in metal transporter SLC39A14, and two variants (rs28618224, rs7154700) in potassium voltage-gated channel genes. The findings would benefit from external validation, as suggestive results may contain both true associations and false positives.


Assuntos
Estudo de Associação Genômica Ampla , Mercúrio , Gravidez , Criança , Humanos , Feminino , Gestantes , Estudos Longitudinais , Genótipo
3.
BMC Psychiatry ; 23(1): 696, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749515

RESUMO

BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) is a prevalent and highly heritable neurodevelopmental disorder of major societal concern. Diagnosis can be challenging and there are large knowledge gaps regarding its etiology, though studies suggest an interplay of genetic and environmental factors involving epigenetic mechanisms. MicroRNAs (miRNAs) show promise as biomarkers of human pathology and novel therapies, and here we aimed to identify blood miRNAs associated with traits of ADHD as possible biomarker candidates and further explore their biological relevance. METHODS: Our study population consisted of 1126 children (aged 5-12 years, 46% female) from the Human Early Life Exposome study, a study spanning six ongoing population-based European birth cohorts. Expression profiles of miRNAs in whole blood samples were quantified by microarray and tested for association with ADHD-related measures of behavior and neuropsychological functions from questionnaires (Conner's Rating Scale and Child Behavior Checklist) and computer-based tests (the N-back task and Attention Network Test). RESULTS: We identified 29 miRNAs significantly associated (false discovery rate < .05) with the Conner's questionnaire-rated trait hyperactivity, 15 of which have been linked to ADHD in previous studies. Investigation into their biological relevance revealed involvement in several pathways related to neurodevelopment and function, as well as being linked with other neurodevelopmental or psychiatric disorders known to overlap with ADHD both in symptomology, genetic risk, and co-occurrence, such as autism spectrum disorder or schizophrenia. An additional three miRNAs were significantly associated with Conner's-rated inattention. No associations were found with questionnaire-rated total ADHD index or with computer-based tests. CONCLUSIONS: The large overlap of our hyperactivity-associated miRNAs with previous studies on ADHD is intriguing and warrant further investigation. Though this study should be considered explorative and preliminary, these findings contribute towards identifying a set of miRNAs for use as blood-based biomarkers to aid in earlier and easier ADHD diagnosis.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , MicroRNAs , Humanos , Criança , Feminino , Masculino , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia , MicroRNAs/genética , Transtorno do Espectro Autista/psicologia , Coorte de Nascimento , Biomarcadores , Agitação Psicomotora/complicações
4.
Elife ; 122023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37278618

RESUMO

Background: While biological age in adults is often understood as representing general health and resilience, the conceptual interpretation of accelerated biological age in children and its relationship to development remains unclear. We aimed to clarify the relationship of accelerated biological age, assessed through two established biological age indicators, telomere length and DNA methylation age, and two novel candidate biological age indicators, to child developmental outcomes, including growth and adiposity, cognition, behavior, lung function and the onset of puberty, among European school-age children participating in the HELIX exposome cohort. Methods: The study population included up to 1173 children, aged between 5 and 12 years, from study centres in the UK, France, Spain, Norway, Lithuania, and Greece. Telomere length was measured through qPCR, blood DNA methylation, and gene expression was measured using microarray, and proteins and metabolites were measured by a range of targeted assays. DNA methylation age was assessed using Horvath's skin and blood clock, while novel blood transcriptome and 'immunometabolic' (based on plasma proteins and urinary and serum metabolites) clocks were derived and tested in a subset of children assessed six months after the main follow-up visit. Associations between biological age indicators with child developmental measures as well as health risk factors were estimated using linear regression, adjusted for chronological age, sex, ethnicity, and study centre. The clock derived markers were expressed as Δ age (i.e. predicted minus chronological age). Results: Transcriptome and immunometabolic clocks predicted chronological age well in the test set (r=0.93 and r=0.84 respectively). Generally, weak correlations were observed, after adjustment for chronological age, between the biological age indicators.Among associations with health risk factors, higher birthweight was associated with greater immunometabolic Δ age, smoke exposure with greater DNA methylation Δ age, and high family affluence with longer telomere length.Among associations with child developmental measures, all biological age markers were associated with greater BMI and fat mass, and all markers except telomere length were associated with greater height, at least at nominal significance (p<0.05). Immunometabolic Δ age was associated with better working memory (p=4 e-3) and reduced inattentiveness (p=4 e-4), while DNA methylation Δ age was associated with greater inattentiveness (p=0.03) and poorer externalizing behaviors (p=0.01). Shorter telomere length was also associated with poorer externalizing behaviors (p=0.03). Conclusions: In children, as in adults, biological aging appears to be a multi-faceted process and adiposity is an important correlate of accelerated biological aging. Patterns of associations suggested that accelerated immunometabolic age may be beneficial for some aspects of child development while accelerated DNA methylation age and telomere attrition may reflect early detrimental aspects of biological aging, apparent even in children. Funding: UK Research and Innovation (MR/S03532X/1); European Commission (grant agreement numbers: 308333; 874583).


Although age is generally measured by the number of years since birth, many factors contribute to the rate at which a person physically ages. In adults, linking these measurements to age gives a measure of overall health and resilience. This 'biological age' offers a better prediction of remaining life and disease risk than the number of years lived. Multiple factors can be used to calculate biological age, such as measuring the length of telomeres ­ protective caps on the end of chromosomes ­ which shorten as people age. The rate at which they shorten can give an indication of how quickly someone is ageing. Researchers can also study epigenetic factors: these mechanisms lead to certain genes being switched on or off, and they can be combined into a 'epigenetic clock' to assess biological age. However, compared with adults, the relationship between biological age and child health and developmental maturity is less well understood. Robinson et al. studied 1,173 school-aged children from six European countries, measuring telomere length, epigenetic factors and other biological indicators related to metabolism and the immune system. The relationships between these factors and an array of child developmental measures such as height, weight, behaviour and the age of onset of puberty were established. The findings showed that biological age indicators are only weakly linked to each other in children. Despite this, biological age was related to greater amount of body fat across all tested indicators ­ which is also associated with biological age in adults and is an important determinant of lifespan. Among several observed effects on development, analysis found that shorter telomere length and older epigenetic age were associated with greater behavioural problems, suggesting they may be detrimental to child development. On the other hand, a greater age due to metabolic and immune related changes was associated with greater cognitive and behavioural maturity. Environmental factors were also linked to biological ageing, with children exposed to smoking in their homes or while their mother was pregnant displaying an older epigenetic age. Robinson et al. showed that biological ageing in children is multifaceted and can have both beneficial and harmful impacts on development. This knowledge is important for identifying early life risk factors that might influence healthy ageing in later life. Future work will help researchers to understand these complex interactions and the long-term consequences for health and well-being.


Assuntos
Envelhecimento , Multiômica , Adulto , Humanos , Criança , Pré-Escolar , Lactente , Envelhecimento/genética , Metilação de DNA , Fatores de Risco , Obesidade/genética , Biomarcadores , Epigênese Genética
5.
BMC Med ; 21(1): 142, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37046291

RESUMO

BACKGROUND: Obesity and neurodevelopmental delay are complex traits that often co-occur and differ between boys and girls. Prenatal exposures are believed to influence children's obesity, but it is unknown whether exposures of pregnant mothers can confer a different risk of obesity between sexes, and whether they can affect neurodevelopment. METHODS: We analyzed data from 1044 children from the HELIX project, comprising 93 exposures during pregnancy, and clinical, neuropsychological, and methylation data during childhood (5-11 years). Using exposome-wide interaction analyses, we identified prenatal exposures with the highest sexual dimorphism in obesity risk, which were used to create a multiexposure profile. We applied causal random forest to classify individuals into two environments: E1 and E0. E1 consists of a combination of exposure levels where girls have significantly less risk of obesity than boys, as compared to E0, which consists of the remaining combination of exposure levels. We investigated whether the association between sex and neurodevelopmental delay also differed between E0 and E1. We used methylation data to perform an epigenome-wide association study between the environments to see the effect of belonging to E1 or E0 at the molecular level. RESULTS: We observed that E1 was defined by the combination of low dairy consumption, non-smokers' cotinine levels in blood, low facility richness, and the presence of green spaces during pregnancy (ORinteraction = 0.070, P = 2.59 × 10-5). E1 was also associated with a lower risk of neurodevelopmental delay in girls, based on neuropsychological tests of non-verbal intelligence (ORinteraction = 0.42, P = 0.047) and working memory (ORinteraction = 0.31, P = 0.02). In line with this, several neurodevelopmental functions were enriched in significant differentially methylated probes between E1 and E0. CONCLUSIONS: The risk of obesity can be different for boys and girls in certain prenatal environments. We identified an environment combining four exposure levels that protect girls from obesity and neurodevelopment delay. The combination of single exposures into multiexposure profiles using causal inference can help determine populations at risk.


Assuntos
Obesidade Infantil , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Criança , Humanos , Masculino , Feminino , Caracteres Sexuais , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Desenvolvimento Infantil
6.
Artigo em Inglês | MEDLINE | ID: mdl-36669811

RESUMO

Several trials have attempted to identify sources of inter-laboratory variability in comet assay results, aiming at achieving more equal responses. Ionising radiation induces a defined level of DNA single-strand breaks (per dose/base pairs) and is used as a reference when comparing comet results but relies on accurately determined radiation doses. In this ring test we studied the significance of dose calibrations and comet assay protocol differences, with the object of identifying causes of variability and how to deal with them. Eight participating laboratories, using either x-ray or gamma radiation units, measured dose rates using alanine pellet dosimeters that were subsequently sent to a specialised laboratory for analysis. We found substantial deviations between calibrated and nominal (uncalibrated) dose rates, with up to 46% difference comparing highest and lowest values. Three additional dosimetry systems were employed in some laboratories: thermoluminescence detectors and two aqueous chemical dosimeters. Fricke's and Benzoic Acid dosimetry solutions gave reliable quantitative dose estimations using local equipment. Mononuclear cells from fresh human blood or mammalian cell lines were irradiated locally with calibrated (alanine) radiation doses and analysed for DNA damage using a standardised comet assay protocol and a lab-specific protocol. The dose response of eight laboratories, calculated against calibrated radiation doses, was linear with slope variance CV= 29% with the lab-specific protocol, reduced to CV= 16% with the standard protocol. Variation between laboratories indicate post-irradiation repair differences. Intra-laboratory variation was very low judging from the dose response of 8 donors (CV=4%). Electrophoresis conditions were different in the lab-specific protocols explaining some dose response variations which were reduced by systematic corrections for electrophoresis conditions. The study shows that comet assay data obtained in different laboratories can be compared quantitatively using calibrated radiation doses and that systematic corrections for electrophoresis conditions are useful.


Assuntos
Dano ao DNA , Radiação Ionizante , Animais , Humanos , Ensaio Cometa/métodos , Calibragem , Raios gama , Relação Dose-Resposta à Radiação , Mamíferos
7.
Environ Mol Mutagen ; 64(2): 88-104, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36629742

RESUMO

The in vivo comet assay is widely used to measure genotoxicity; however, the current OECD test guideline (TG 489) does not recommend using the assay to assess testicular germ cells, due to the presence of testicular somatic cells. An adapted approach to specifically assess testicular germ cells within the comet assay is certainly warranted, considering regulatory needs for germ cell-specific genotoxicity data in relation to the increasing global production of and exposure to potentially hazardous chemicals. Here, we provide a proof-of-concept to selectively analyze round spermatids and primary spermatocytes, distinguishing them from other cells of the testicle. Utilizing the comet assay recordings of DNA content (total fluorescence intensity) and DNA damage (% tail intensity) of individual comets, we developed a framework to distinguish testicular cell populations based on differences in DNA content/ploidy and appearance. Haploid round spermatid comets are identified through (1) visual inspection of DNA content distributions, (2) setting DNA content thresholds, and (3) modeling DNA content distributions using a normal mixture distribution function. We also describe an approach to distinguish primary spermatocytes during comet scoring, based on their high DNA content and large physical size. Our concept allows both somatic and germ cells to be analyzed in the same animal, adding a versatile, sensitive, rapid, and resource-efficient assay to the limited genotoxicity assessment toolbox for germ cells. An adaptation of TG 489 facilitates accumulation of valuable information regarding distribution of substances to germ cells and their potential for inducing germ cell gene mutations and structural chromosomal aberrations.


Assuntos
Espermatozoides , Testículo , Masculino , Animais , Ensaio Cometa , Dano ao DNA , Células Germinativas , DNA
8.
Nat Protoc ; 18(3): 929-989, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36707722

RESUMO

The comet assay is a versatile method to detect nuclear DNA damage in individual eukaryotic cells, from yeast to human. The types of damage detected encompass DNA strand breaks and alkali-labile sites (e.g., apurinic/apyrimidinic sites), alkylated and oxidized nucleobases, DNA-DNA crosslinks, UV-induced cyclobutane pyrimidine dimers and some chemically induced DNA adducts. Depending on the specimen type, there are important modifications to the comet assay protocol to avoid the formation of additional DNA damage during the processing of samples and to ensure sufficient sensitivity to detect differences in damage levels between sample groups. Various applications of the comet assay have been validated by research groups in academia, industry and regulatory agencies, and its strengths are highlighted by the adoption of the comet assay as an in vivo test for genotoxicity in animal organs by the Organisation for Economic Co-operation and Development. The present document includes a series of consensus protocols that describe the application of the comet assay to a wide variety of cell types, species and types of DNA damage, thereby demonstrating its versatility.


Assuntos
Dano ao DNA , Dímeros de Pirimidina , Animais , Humanos , Ensaio Cometa/métodos , Células Eucarióticas , DNA/genética
9.
Mol Psychiatry ; 28(3): 1128-1136, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36385171

RESUMO

The general psychopathology factor (GPF) has been proposed as a way to capture variance shared between psychiatric symptoms. Despite a growing body of evidence showing both genetic and environmental influences on GPF, the biological mechanisms underlying these influences remain unclear. In the current study, we conducted epigenome-wide meta-analyses to identify both probe- and region-level associations of DNA methylation (DNAm) with school-age general psychopathology in six cohorts from the Pregnancy And Childhood Epigenetics (PACE) Consortium. DNAm was examined both at birth (cord blood; prospective analysis) and during school-age (peripheral whole blood; cross-sectional analysis) in total samples of N = 2178 and N = 2190, respectively. At school-age, we identified one probe (cg11945228) located in the Bromodomain-containing protein 2 gene (BRD2) that negatively associated with GPF (p = 8.58 × 10-8). We also identified a significant differentially methylated region (DMR) at school-age (p = 1.63 × 10-8), implicating the SHC Adaptor Protein 4 (SHC4) gene and the EP300-interacting inhibitor of differentiation 1 (EID1) gene that have been previously implicated in multiple types of psychiatric disorders in adulthood, including obsessive compulsive disorder, schizophrenia, and major depressive disorder. In contrast, no prospective associations were identified with DNAm at birth. Taken together, results of this study revealed some evidence of an association between DNAm at school-age and GPF. Future research with larger samples is needed to further assess DNAm variation associated with GPF.


Assuntos
Metilação de DNA , Transtorno Depressivo Maior , Gravidez , Recém-Nascido , Feminino , Humanos , Epigenoma , Epigênese Genética , Estudos Transversais , Transtorno Depressivo Maior/genética , Estudo de Associação Genômica Ampla
10.
Nat Commun ; 13(1): 7024, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36411288

RESUMO

Environmental exposures during early life play a critical role in life-course health, yet the molecular phenotypes underlying environmental effects on health are poorly understood. In the Human Early Life Exposome (HELIX) project, a multi-centre cohort of 1301 mother-child pairs, we associate individual exposomes consisting of >100 chemical, outdoor, social and lifestyle exposures assessed in pregnancy and childhood, with multi-omics profiles (methylome, transcriptome, proteins and metabolites) in childhood. We identify 1170 associations, 249 in pregnancy and 921 in childhood, which reveal potential biological responses and sources of exposure. Pregnancy exposures, including maternal smoking, cadmium and molybdenum, are predominantly associated with child DNA methylation changes. In contrast, childhood exposures are associated with features across all omics layers, most frequently the serum metabolome, revealing signatures for diet, toxic chemical compounds, essential trace elements, and weather conditions, among others. Our comprehensive and unique resource of all associations ( https://helixomics.isglobal.org/ ) will serve to guide future investigation into the biological imprints of the early life exposome.


Assuntos
Expossoma , Gravidez , Feminino , Humanos , Exposição Ambiental/efeitos adversos , Estudos de Coortes , Metaboloma , Transcriptoma
11.
Front Genet ; 13: 867611, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646076

RESUMO

Background: Maternal smoking during pregnancy has adverse health effects on the offspring, including lower birth weight and increased risk for obesity. These outcomes are also influenced by common genetic polymorphisms. We aimed to investigate the combined effect of maternal smoking during pregnancy and genetic predisposition on birth weight and body mass index (BMI)-related traits in 1,086 children of the Human Early Life Exposome (HELIX) project. Methods: Maternal smoking during pregnancy was self-reported. Phenotypic traits were assessed at birth or at the age of 8 years. Ten polygenic risk scores (PRSs) per trait were calculated using the PRSice v2 program. For birth weight, we estimated two sets of PRSs based on two different base GWAS summary statistics: PRS-EGG, which includes HELIX children, and PRS-PanUK, which is completely independent. The best PRS per trait (highest R 2) was selected for downstream analyses, and it was treated in continuous or categorized into three groups. Multivariate linear regression models were applied to evaluate the association of the explanatory variables with the traits of interest. The combined effect was evaluated by including an interaction term in the regression models and then running models stratified by the PRS group. Results: BMI-related traits were correlated among them but not with birth weight. A similar pattern was observed for their PRSs. On average, the PRSs explained ∼4% of the phenotypic variation, with higher PRS values related to higher trait values (p-value <5.55E-08). Sustained maternal smoking was associated with lower birth weight and higher BMI and related traits (p-value <2.99E-02). We identified a gene by environment (GxE) interaction for birth weight between sustained maternal smoking and the PRS-EGG in three groups (p-value interaction = 0.01), which was not replicated with the PRS-PanUK (p-value interaction = 0.341). Finally, we did not find any statistically significant GxE interaction for BMI-related traits (p-value interaction >0.237). Conclusion: Sustained maternal smoking and the PRSs were independently associated with birth weight and childhood BMI-related traits. There was low evidence of GxE interactions.

12.
Commun Biol ; 5(1): 455, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35550596

RESUMO

Polymorphic genomic inversions are chromosomal variants with intrinsic variability that play important roles in evolution, environmental adaptation, and complex traits. We investigated the DNA methylation patterns of three common human inversions, at 8p23.1, 16p11.2, and 17q21.31 in 1,009 blood samples from children from the Human Early Life Exposome (HELIX) project and in 39 prenatal heart tissue samples. We found inversion-state specific methylation patterns within and nearby flanking each inversion region in both datasets. Additionally, numerous inversion-exposure interactions on methylation levels were identified from early-life exposome data comprising 64 exposures. For instance, children homozygous at inv-8p23.1 and higher meat intake were more susceptible to TDH hypermethylation (P = 3.8 × 10-22); being the inversion, exposure, and gene known risk factors for adult obesity. Inv-8p23.1 associated hypermethylation of GATA4 was also detected across numerous exposures. Our data suggests that the pleiotropic influence of inversions during development and lifetime could be substantially mediated by allele-specific methylation patterns which can be modulated by the exposome.


Assuntos
Metilação de DNA , Expossoma , Adulto , Alelos , Criança , Inversão Cromossômica , Feto , Humanos , Obesidade/genética
13.
Environ Res ; 211: 113109, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35292243

RESUMO

Exposure to air pollution influences children's health, however, the biological mechanisms underlying these effects are not completely elucidated. We investigated the association between short- and medium-term outdoor air pollution exposure with protein profiles and their link with blood pressure in 1170 HELIX children aged 6-11 years. Different air pollutants (NO2, PM10, PM2.5, and PM2.5abs) were estimated based on residential and school addresses at three different windows of exposure (1-day, 1-week, and 1-year before clinical and molecular assessment). Thirty-six proteins, including adipokines, cytokines, or apolipoproteins, were measured in children's plasma using Luminex. Systolic and diastolic blood pressure (SBP and DBP) were measured following a standardized protocol. We performed an association study for each air pollutant at each location and time window and each outcome, adjusting for potential confounders. After correcting for multiple-testing, hepatocyte growth factor (HGF) and interleukin 8 (IL8) levels were positively associated with 1-week home exposure to some of the pollutants (NO2, PM10, or PM2.5). NO2 1-week home exposure was also related to higher SBP. The mediation study suggested that HGF could explain 19% of the short-term effect of NO2 on blood pressure, but other study designs are needed to prove the causal directionality between HGF and blood pressure.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Pressão Sanguínea , Criança , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Humanos , Dióxido de Nitrogênio/análise , Material Particulado/análise , Material Particulado/toxicidade
14.
Elife ; 112022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35302492

RESUMO

Background: The identification of expression quantitative trait methylation (eQTMs), defined as associations between DNA methylation levels and gene expression, might help the biological interpretation of epigenome-wide association studies (EWAS). We aimed to identify autosomal cis eQTMs in children's blood, using data from 832 children of the Human Early Life Exposome (HELIX) project. Methods: Blood DNA methylation and gene expression were measured with the Illumina 450K and the Affymetrix HTA v2 arrays, respectively. The relationship between methylation levels and expression of nearby genes (1 Mb window centered at the transcription start site, TSS) was assessed by fitting 13.6 M linear regressions adjusting for sex, age, cohort, and blood cell composition. Results: We identified 39,749 blood autosomal cis eQTMs, representing 21,966 unique CpGs (eCpGs, 5.7% of total CpGs) and 8,886 unique transcript clusters (eGenes, 15.3% of total transcript clusters, equivalent to genes). In 87.9% of these cis eQTMs, the eCpG was located at <250 kb from eGene's TSS; and 58.8% of all eQTMs showed an inverse relationship between the methylation and expression levels. Only around half of the autosomal cis-eQTMs eGenes could be captured through annotation of the eCpG to the closest gene. eCpGs had less measurement error and were enriched for active blood regulatory regions and for CpGs reported to be associated with environmental exposures or phenotypic traits. In 40.4% of the eQTMs, the CpG and the eGene were both associated with at least one genetic variant. The overlap of autosomal cis eQTMs in children's blood with those described in adults was small (13.8%), and age-shared cis eQTMs tended to be proximal to the TSS and enriched for genetic variants. Conclusions: This catalogue of autosomal cis eQTMs in children's blood can help the biological interpretation of EWAS findings and is publicly available at https://helixomics.isglobal.org/ and at Dryad (doi:10.5061/dryad.fxpnvx0t0). Funding: The study has received funding from the European Community's Seventh Framework Programme (FP7/2007-206) under grant agreement no 308333 (HELIX project); the H2020-EU.3.1.2. - Preventing Disease Programme under grant agreement no 874583 (ATHLETE project); from the European Union's Horizon 2020 research and innovation programme under grant agreement no 733206 (LIFECYCLE project), and from the European Joint Programming Initiative "A Healthy Diet for a Healthy Life" (JPI HDHL and Instituto de Salud Carlos III) under the grant agreement no AC18/00006 (NutriPROGRAM project). The genotyping was supported by the projects PI17/01225 and PI17/01935, funded by the Instituto de Salud Carlos III and co-funded by European Union (ERDF, "A way to make Europe") and the Centro Nacional de Genotipado-CEGEN (PRB2-ISCIII). BiB received core infrastructure funding from the Wellcome Trust (WT101597MA) and a joint grant from the UK Medical Research Council (MRC) and Economic and Social Science Research Council (ESRC) (MR/N024397/1). INMA data collections were supported by grants from the Instituto de Salud Carlos III, CIBERESP, and the Generalitat de Catalunya-CIRIT. KANC was funded by the grant of the Lithuanian Agency for Science Innovation and Technology (6-04-2014_31V-66). The Norwegian Mother, Father and Child Cohort Study is supported by the Norwegian Ministry of Health and Care Services and the Ministry of Education and Research. The Rhea project was financially supported by European projects (EU FP6-2003-Food-3-NewGeneris, EU FP6. STREP Hiwate, EU FP7 ENV.2007.1.2.2.2. Project No 211250 Escape, EU FP7-2008-ENV-1.2.1.4 Envirogenomarkers, EU FP7-HEALTH-2009- single stage CHICOS, EU FP7 ENV.2008.1.2.1.6. Proposal No 226285 ENRIECO, EU- FP7- HEALTH-2012 Proposal No 308333 HELIX), and the Greek Ministry of Health (Program of Prevention of obesity and neurodevelopmental disorders in preschool children, in Heraklion district, Crete, Greece: 2011-2014; "Rhea Plus": Primary Prevention Program of Environmental Risk Factors for Reproductive Health, and Child Health: 2012-15). We acknowledge support from the Spanish Ministry of Science and Innovation through the "Centro de Excelencia Severo Ochoa 2019-2023" Program (CEX2018-000806-S), and support from the Generalitat de Catalunya through the CERCA Program. MV-U and CR-A were supported by a FI fellowship from the Catalan Government (FI-DGR 2015 and #016FI_B 00272). MC received funding from Instituto Carlos III (Ministry of Economy and Competitiveness) (CD12/00563 and MS16/00128).


Cells can fine-tune which genes they activate, when and at which levels using a range of chemical marks on the DNA and certain proteins that help to organise the genome. One well-known example of such 'epigenetic tags' is DNA methylation, whereby a methyl group is added onto particular positions in the genome. Many factors ­ including environmental effects such as diet ­ control DNA methylation, allowing an organism to adapt to ever-changing conditions. An expression quantitative trait methylation (eQTM) is a specific position of the genome whose DNA methylation status regulates the activity of a given gene. A catalogue of eQTMs would be useful in helping to reveal how the environment and disease impacts the way cells work. Yet, currently, the relationships between most epigenetic tags and gene activity remains unclear, especially in children. To fill this gap, Ruiz-Arenas et al. studied DNA methylation in blood samples from over 800 healthy children across Europe. Amongst all tested DNA methylation sites, 22,000 (5.7% of total) were associated with the expression of a gene ­ and therefore were eQTMs; reciprocally, 9,000 genes (15.3% of all tested genes) were linked to at least one methylation site, leading to a total of 40,000 pairs of DNA methylation sites and genes. Most often, eQTMs regulated the expression of nearby genes ­ but only half controlled the gene that was the closest to them. Age and the genetic background of the individuals influenced the nature of eQTMs. This catalogue is a useful resource for the scientific community to start understanding the relationship between epigenetics and gene activity. Similar studies are now needed for other tissues and age ranges. Overall, extending our knowledge of eQTMs may help reveal how life events lead to illness, and could inform prevention efforts.


Assuntos
Metilação de DNA , Epigenoma , Adulto , Pré-Escolar , Estudos de Coortes , Europa (Continente) , Humanos , Fenótipo
15.
Environ Res ; 204(Pt B): 112093, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34562483

RESUMO

Mercury (Hg) is a ubiquitous heavy metal that originates from both natural and anthropogenic sources and is transformed in the environment to its most toxicant form, methylmercury (MeHg). Recent studies suggest that MeHg exposure can alter epigenetic modifications during embryogenesis. In this study, we examined associations between prenatal MeHg exposure and levels of cord blood DNA methylation (DNAm) by meta-analysis in up to seven independent studies (n = 1462) as well as persistence of those relationships in blood from 7 to 8 year-old children (n = 794). In cord blood, we found limited evidence of differential DNAm at cg24184221 in MED31 (ß = 2.28 × 10-4, p-value = 5.87 × 10-5) in relation to prenatal MeHg exposure. In child blood, we identified differential DNAm at cg15288800 (ß = 0.004, p-value = 4.97 × 10-5), also located in MED31. This repeated link to MED31, a gene involved in lipid metabolism and RNA Polymerase II transcription function, may suggest a DNAm perturbation related to MeHg exposure that persists into early childhood. Further, we found evidence for association between prenatal MeHg exposure and child blood DNAm levels at two additional CpGs: cg12204245 (ß = 0.002, p-value = 4.81 × 10-7) in GRK1 and cg02212000 (ß = -0.001, p-value = 8.13 × 10-7) in GGH. Prenatal MeHg exposure was associated with DNAm modifications that may influence health outcomes, such as cognitive or anthropometric development, in different populations.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Efeitos Tardios da Exposição Pré-Natal , Criança , Pré-Escolar , Metilação de DNA , Feminino , Sangue Fetal , Humanos , Complexo Mediador , Mercúrio/toxicidade , Compostos de Metilmercúrio/toxicidade , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/genética , Estudos Prospectivos
16.
Commun Biol ; 4(1): 1354, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857879

RESUMO

Oxidative DNA damage in the brain has been implicated in neurodegeneration and cognitive decline. DNA glycosylases initiate base excision repair (BER), the main pathway for oxidative DNA base lesion repair. NEIL1 and NEIL3 DNA glycosylases affect cognition in mice, while the role of NEIL2 remains unclear. Here, we investigate the impact of NEIL2 and its potential overlap with NEIL1 on behavior in knockout mouse models. Neil1-/-Neil2-/- mice display hyperactivity, reduced anxiety and improved learning. Hippocampal oxidative DNA base lesion levels are comparable between genotypes and no mutator phenotype is found. Thus, impaired canonical repair is not likely to explain the altered behavior. Electrophysiology suggests reduced axonal activation in the hippocampal CA1 region in Neil1-/-Neil2-/- mice and lack of NEIL1 and NEIL2 causes dysregulation of genes in CA1 relevant for synaptic function. We postulate a cooperative function of NEIL1 and NEIL2 in genome regulation, beyond canonical BER, modulating behavior in mice.


Assuntos
Ansiedade/genética , DNA Glicosilases/genética , Aprendizagem , Camundongos/psicologia , Animais , DNA Glicosilases/metabolismo , Regulação da Expressão Gênica , Hipocampo/fisiologia , Masculino , Camundongos/genética , Camundongos Knockout , Estresse Oxidativo/fisiologia
17.
Environ Epidemiol ; 5(5): e166, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34934888

RESUMO

Early life stages are vulnerable to environmental hazards and present important windows of opportunity for lifelong disease prevention. This makes early life a relevant starting point for exposome studies. The Advancing Tools for Human Early Lifecourse Exposome Research and Translation (ATHLETE) project aims to develop a toolbox of exposome tools and a Europe-wide exposome cohort that will be used to systematically quantify the effects of a wide range of community- and individual-level environmental risk factors on mental, cardiometabolic, and respiratory health outcomes and associated biological pathways, longitudinally from early pregnancy through to adolescence. Exposome tool and data development include as follows: (1) a findable, accessible, interoperable, reusable (FAIR) data infrastructure for early life exposome cohort data, including 16 prospective birth cohorts in 11 European countries; (2) targeted and nontargeted approaches to measure a wide range of environmental exposures (urban, chemical, physical, behavioral, social); (3) advanced statistical and toxicological strategies to analyze complex multidimensional exposome data; (4) estimation of associations between the exposome and early organ development, health trajectories, and biological (metagenomic, metabolomic, epigenetic, aging, and stress) pathways; (5) intervention strategies to improve early life urban and chemical exposomes, co-produced with local communities; and (6) child health impacts and associated costs related to the exposome. Data, tools, and results will be assembled in an openly accessible toolbox, which will provide great opportunities for researchers, policymakers, and other stakeholders, beyond the duration of the project. ATHLETE's results will help to better understand and prevent health damage from environmental exposures and their mixtures from the earliest parts of the life course onward.

18.
Environ Int ; 155: 106683, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34144479

RESUMO

The early-life exposome influences future health and accelerated biological aging has been proposed as one of the underlying biological mechanisms. We investigated the association between more than 100 exposures assessed during pregnancy and in childhood (including indoor and outdoor air pollutants, built environment, green environments, tobacco smoking, lifestyle exposures, and biomarkers of chemical pollutants), and epigenetic age acceleration in 1,173 children aged 7 years old from the Human Early-Life Exposome project. Age acceleration was calculated based on Horvath's Skin and Blood clock using child blood DNA methylation measured by Infinium HumanMethylation450 BeadChips. We performed an exposure-wide association study between prenatal and childhood exposome and age acceleration. Maternal tobacco smoking during pregnancy was nominally associated with increased age acceleration. For childhood exposures, indoor particulate matter absorbance (PMabs) and parental smoking were nominally associated with an increase in age acceleration. Exposure to the organic pesticide dimethyl dithiophosphate and the persistent pollutant polychlorinated biphenyl-138 (inversely associated with child body mass index) were protective for age acceleration. None of the associations remained significant after multiple-testing correction. Pregnancy and childhood exposure to tobacco smoke and childhood exposure to indoor PMabs may accelerate epigenetic aging from an early age.


Assuntos
Poluentes Ambientais , Expossoma , Aceleração , Criança , Metilação de DNA , Exposição Ambiental , Poluentes Ambientais/análise , Poluentes Ambientais/toxicidade , Epigênese Genética , Feminino , Humanos , Gravidez
19.
Mutat Res Rev Mutat Res ; 787: 108371, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34083035

RESUMO

The alkaline comet assay, or single cell gel electrophoresis, is one of the most popular methods for assessing DNA damage in human population. One of the open issues concerning this assay is the identification of those factors that can explain the large inter-individual and inter-laboratory variation. International collaborative initiatives such as the hCOMET project - a COST Action launched in 2016 - represent a valuable tool to meet this challenge. The aims of hCOMET were to establish reference values for the level of DNA damage in humans, to investigate the effect of host factors, lifestyle and exposure to genotoxic agents, and to compare different sources of assay variability. A database of 19,320 subjects was generated, pooling data from 105 studies run by 44 laboratories in 26 countries between 1999 and 2019. A mixed random effect log-linear model, in parallel with a classic meta-analysis, was applied to take into account the extensive heterogeneity of data, due to descriptor, specimen and protocol variability. As a result of this analysis interquartile intervals of DNA strand breaks (which includes alkali-labile sites) were reported for tail intensity, tail length, and tail moment (comet assay descriptors). A small variation by age was reported in some datasets, suggesting higher DNA damage in oldest age-classes, while no effect could be shown for sex or smoking habit, although the lack of data on heavy smokers has still to be considered. Finally, highly significant differences in DNA damage were found for most exposures investigated in specific studies. In conclusion, these data, which confirm that DNA damage measured by the comet assay is an excellent biomarker of exposure in several conditions, may contribute to improving the quality of study design and to the standardization of results of the comet assay in human populations.


Assuntos
Ensaio Cometa/métodos , Biomarcadores/sangue , Dano ao DNA/genética , Dano ao DNA/fisiologia , Humanos
20.
Environ Pollut ; 284: 117404, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34077897

RESUMO

Epidemiological studies mostly focus on single environmental exposures. This study aims to systematically assess associations between a wide range of prenatal and childhood environmental exposures and cognition. The study sample included data of 1298 mother-child pairs, children were 6-11 years-old, from six European birth cohorts. We measured 87 exposures during pregnancy and 122 cross-sectionally during childhood, including air pollution, built environment, meteorology, natural spaces, traffic, noise, chemicals and life styles. The measured cognitive domains were fluid intelligence (Raven's Coloured Progressive Matrices test, CPM), attention (Attention Network Test, ANT) and working memory (N-Back task). We used two statistical approaches to assess associations between exposure and child cognition: the exposome-wide association study (ExWAS) considering each exposure independently, and the deletion-substitution-addition algorithm (DSA) considering all exposures simultaneously to build a final multiexposure model. Based on this multiexposure model that included the exposure variables selected by ExWAS and DSA models, child organic food intake was associated with higher fluid intelligence (CPM) scores (beta = 1.18; 95% CI = 0.50, 1.87) and higher working memory (N-Back) scores (0.23; 0.05, 0.41), and child fast food intake (-1.25; -2.10, -0.40), house crowding (-0.39; -0.62, -0.16), and child environmental tobacco smoke (ETS) (-0.89; -1.42, -0.35), were all associated with lower CPM scores. Indoor PM2.5 exposure was associated with lower N-Back scores (-0.09; -0.16, -0.02). Additional associations in the unexpected direction were found: Higher prenatal mercury levels, maternal alcohol consumption and child higher perfluorooctane sulfonic acid (PFOS) levels were associated with better cognitive performance; and higher green exposure during pregnancy with lower cognitive performance. This first comprehensive and systematic study of many prenatal and childhood environmental risk factors suggests that unfavourable child nutrition, family crowdedness and child indoor air pollution and ETS exposures adversely and cross-sectionally associate with cognitive function. Unexpected associations were also observed and maybe due to confounding and reverse causality.


Assuntos
Expossoma , Criança , Cognição , Estudos de Coortes , Exposição Ambiental , Europa (Continente) , Feminino , Humanos , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...